Denoise ======= denoise - Diffusion-Weighted Image Noise Reduction Part of the micaflow processing pipeline for neuroimaging data. This module denoises diffusion-weighted images (DWI) using the Patch2Self algorithm, which leverages redundant information across diffusion gradients to remove noise without requiring additional reference scans. Patch2Self is a self-supervised learning approach that improves image quality and enhances subsequent diffusion analyses by removing random noise while preserving anatomical structures. Features: -------- - Self-supervised learning approach requiring no separate reference data - Adapts to the unique noise characteristics of each dataset - Preserves anatomical structure while effectively removing noise - Compatible with standard diffusion MRI acquisition protocols - Improves subsequent analyses such as fiber tracking and diffusion metrics API Usage: --------- micaflow denoise --input --bval --bvec --output Python Usage: ----------- >>> from micaflow.scripts.denoise import run_denoise >>> run_denoise( ... moving="raw_dwi.nii.gz", ... moving_bval="dwi.bval", ... moving_bvec="dwi.bvec", ... output="denoised_dwi.nii.gz" ... ) Command Line Usage ----------------- .. code-block:: bash micaflow denoise [options] Source Code ----------- View the source code: `GitHub Repository `_ Description ----------- This script denoises diffusion-weighted images (DWI) using the Patch2Self algorithm, which leverages redundant information across diffusion gradients to remove noise without requiring additional reference scans. Full Help --------- .. code-block:: text ╔════════════════════════════════════════════════════════════════╗ ║ DWI IMAGE DENOISING ║ ╚════════════════════════════════════════════════════════════════╝ This script denoises diffusion-weighted images (DWI) using the Patch2Self algorithm, which leverages redundant information across diffusion gradients to remove noise without requiring additional reference scans. ────────────────────────── USAGE ────────────────────────── micaflow denoise [options] ─────────────────── REQUIRED ARGUMENTS ─────────────────── --input : Path to the input DWI image (.nii.gz) --bval : Path to the b-values file (.bval) --bvec : Path to the b-vectors file (.bvec) --output : Output path for the denoised image (.nii.gz) ─────────────────── EXAMPLE USAGE ─────────────────── micaflow denoise \ --input raw_dwi.nii.gz \ --bval dwi.bval \ --bvec dwi.bvec \ --output denoised_dwi.nii.gz ────────────────────────── NOTES ───────────────────────── - Patch2Self is a self-supervised learning method for denoising - Processing preserves anatomical structure while removing noise - The implementation uses OLS regression with b0 threshold of 50 s/mm² - B0 volumes are not denoised separately in this implementation